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Abstract. We describe a method for evaluating analytical long-range contributions to scattering
lengths for some potentials used in atomic physics, We assume that an interaction potential
between colliding particles consists of two parts, The form of a short-range component, vanishing
beyond some distance from the origin (a core radius), need not be given. Instead, we assume
that a set of short-range scattering lengths due to that part of the interaction is known. A long-
range tail of the potential is chosen to be an inverse power potential, a superposition of two
inverse power potentials with suitably chasen exponents or the Lenz potential. For these three
clagses of long-range interactions a radial Schrisdinger equation at zere energy may be solved
analytically with solutions expressed in terms of the Bessel, Whittaker and Legendrs functions,
respectively. We utilize this fact and derive exact analytical formulae for the scattering lengths.
The expressions depend on the short-range scattering lengths, the core radius and parameters
characterizing the long-range part of the interaction. Cases when the long-range potential {or
its part) may be treated as a perturbation are also discussed and formulae for scattering lengths
linear in strengths of the perturbing potentials are given. It is shown that for some combination
of the orbital angular momentum quantum number and an exponent of the leading term of the
potential the derived formulae, exact or approximate, take very simple forms and contain only
polynomial and trigonometric functions. The expressions obtained in this paper are applicable to
scattering of charged particles by neutral targets and to collisions between neutrals, The results
are iHustrated by accelerating convergence of scattering lengths computed for e”—Xe and Cs-Cs
systems. ’

1. Introduction

In many approaches used to solve collision problems in atomic physics the three-dimensional
configuration space is divided into two regions separated by a spherical shell (a core
boundary) of radius p [1]. In the inner region {(r < p) the short-range interaction
between two colliding particles is very complicated and a scattering equation must be solved
independently for each combination of particles. In contrast, if p is chosen sufficiently large
the scattering problem in the outer region (r > p) may be reduced to potential scattering
with the long-range potential accurately approximated by a simple analytical expression.
A numerical solution in this region is usually easily approachable. However, if exact or
approximate analytical solutions to the Schrodinger equation are available in this region, a
general discussion of the dependency of scattering observables on parameters characterizing
the long-range part of the interaction is possible. Clearly, such cases always remain of
considerable interest. )

In this paper we consider a problem of computing long-range contributions to scattering
lengths in atomic physics. This problem has recently aitracted some interest [2, 3].
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We utilize the fact that analytical solutions to the radial Schrédinger equation at zero
energy do exist for the most important long-range potentials used in atomic physics. This
immediately implies that corresponding long-range contributions to the scattering lengths
may be found exactly. In section 2 we derive analytic expressions for scattering lengths for
potentials vanishing asymptotically as the inverse power potentials, superpositions of two
such potentials with suitably chosen exponents and the Lenz potentials. In section 3 we
discuss applications of these results to atomic physics and give illustrative examples.

2. Theory

2,1. Preliminaries

A variety of definitions of the scattering lengths exist. Throughout this paper we use the
one which defines an /th partial wave scattering length &; as

a = — (2 = D!t 21+ D éirré[kﬂ‘” cot 8, (k)] ™! (1)

where §;(k) is an /th partial wave phase shift due to the scattering potential and k is a
wavenumber of a scattered particle. Some authors use a definition with an opposite sign
while some omit the factor (21 — 1)!1(21 + I)!! For [ = 0 our definition agrees with that
adopted by Fano and Rau [1]. It may be shown [4] that ; exists only for potentials with
long-range tails V_(r} satisfying a condition

Jlim. rEBy ) =0. (2)

Numerical computation of the scattering lengths is usuvally based on numerical integration
of the zero-energy Schriidinger equation (e.g. [5]) or a first-order nonlinear differential
equation arising in the variable phase method [6]. Alternative approaches have recently
been presented by Gribakin and Flambaum [2] and Marinescu [3]. Here we shall use still
another method.

The scattering length may be extracted from a solution to a radial Schrédinger equation
at an energy E =0

Pu(ry I +1) Im
dr? T2 wi{r) = 'h—zvl-(r)ul(r) =0 rzp (3)
which for potentials satisfying condition (2) behaves asymptotically as

+1 alr—l) . (4)

It follows from (3) and (4) that &; is an asymptotic limit of a function a;{r),

r—=os
u;{r) — constant x (r

a = lim a{r) )
defined as
gLy —d+1)
atry=r rL () +1 ©)
Hete
_ _1__ duy(r) ) ] ) ) “
Li(r} = o) & (7}

is a logarithmic derivative of the zero-energy wavefunction u(r).
In the following we shall assume that the interaction potential between a projectile and
a target consists of two parts. The form of a short-range component, vanishing beyond the
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core radius p, need not be given. Instead, we suppose that a set of short-range scattering
lengths ay, due to that part of the interaction is known. For r » p the general solution to (3)
has the form

w(r) = Azfz(r) + Big(r}) rzpe &)
where f; and g; are two linearly independent solutions to this equation. Then the logarithmic
derivative L, is

'(rY+ Dygi(r

Li(r) = 5@ 181 (r)
Sy + Digi(r)
where prime denotes differentiation with respect to the argument and D; = B;/ A, is to be
determined. This can easily be done and from (6) and (9) used at r = p one obtains
(p*H — ai)pf] (p) — [+ D™t + lays] fi(p)
(p2+ — a)pgi(e) — [+ 1)+ + lays)gi(p)
since ar; = ai{p). The method which we shall utilize in this paper employs (5}, (6), (9)
and (10).

9

D= — (10)

2.2. Inverse power potentials

Let VL(r)} be the inverse power potential of the form

B® b?
wr)=s ——— b>0 rzp. (11}
2mrt
A general solution to the Schrddinger equation
du ) g +1 b2
D L ue+ Sun =0 rp 12)
dr? rt
may be written in terms of the Bessel and Neumann functions [7-9]
wur(r) = Arr'2 0, (x) + Bir ¥, (x) r>p (13)
where
2041
w= (14)
n—2
and
% = x(r) = 22 p=t-Dr2 (15)
n—2
Condition (2) requires
n>243 or equivalently O<p<l (16)

otherwise a; does not exist. Utilizing equations (5)~(10) and standard properties of the
Bessel and Neumann functions [7] one finds

o= ﬂ( b )2'“ By + cot(m L) an
n=2/ T@'(u+1)
with
& = _zﬂpﬂﬂ Y_pi(xs) - (PZH-I —~ ag)xs Y,u-a—l(-xs) (18)
ZHPZIH Ju (x) — (Pﬂ+] - a!s)xs-'ry+1(xs)
where

x5 = x(p)}. (19)
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Similar results have been obtained by Fabrikant [10] and Gribakin and Flambaum [2].

Equations (17) and (18) greatly simplify for those combinations of # and / for which
o= % Then the Bessel and Neumann functions may be expressed in terms of trigoncmetric
functions {7} and one gets

b 14 {x; — ys)tan(x,)

_ : 20
@ 20+ 1 tan(xs) — (xs — yis) o
where
b
5T o L1, 2
M5 = GBI Dag =

In many practical applications the long-range potential may be treated as a perturbation of
the short-range interaction, which always holds for sufficiently large p. In such a case one
gets the following expression correct to the first order in b%:

o = ag, — b6 @2)

where

g — L pnHt PO 2ap™ + i (23)
! 2+ 1 n—21—3 n—2 nrd-—1

is independent on b. A condition of applicability of (22) is
B < lass] . (24)

2.3. Superposition of two inverse power potentials

Next we consider scattering of an [th partial wave by the long-range potential {11}

i) = REp2 R &
LV Zmorr  2mrin-2
with a restriction n > 2/ + 3. In applications ¢? may be positive as well as negative. A
general solution to the radial Schrédinger equation

b>0 rzp (25)

Pul) Dy + But) - =0 r3p @9
may be expressed in terms of the Whittaker functmns [12-14]

w(r) = A DPM, w2y + Bir®ORM, _upn(2) (27)
where

2
= ::.11-_;-21 = 2(nb— 2)e =

and

z=2z(r) = L r-2 (29)

n—2

Note that for ¢ < 0 the index « and the variable z are purely imaginary. Utilizing properties
of the Whittaker functions [7] the scattering length is found to be

@ = ( 2 )n (%) — i) 2k —pt D Mot pa Ea)H[0% 7 (2 =24 = D—atrs (2= 28 — = 1)]M, -2 (25) (30)
t=\n=3 (o™ — @) B TR DMt 2RI iy — 2 b =Ty =ay (e~ 20— = 1) p2fz0)

where
zs = z(p}. €)Y
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We observe that in applications the second term contributing to Vi (r) (proportional to
¢?) might be much smaller then the first one and thus might be treated as a perturbation of
the latter, This allows us to apply the perturbation theory to derive an analytical expression
which is linear in ¢2. The substitution

w(r) = g~y ) (32)
with

E=E(ry=r"02 h=3(e—1) ' (33)
converts the Schridinger equation (26) into the well known Coulomb equation
d*v AMa+1 b —(nm

dgﬁf’ M = dse) + FHO-Fn@ =0 50 (34)

where

- b . c

b=n_2-- c—n_z. (35)

It has been. shown in [15] that its regular and irregular sclutions may be expanded in series
of the Bessel and Neumann functions, respectively, and that to the first order in ¢* one has

.-'!

Unreg(8) =2 X T (X) + — S g1 (6) = (1 = @) ()] (36)
=2
c
i) = x¥, (x} + Wfix}’;m(ﬂ = (1= @)Y 2(x)] (37)
where
26w Peljz
x=x(r)=——r " = 2hel/2 - (38)
n—2 .
Therefore a general solution to (26} may be written approximately as

2 (n —2)?
24b%

w(r)y = Ar'? {fu(x) +c X i (x) = (1 — #)J#+2(JC)]}

2z
+B;r”2[Y#(x)+c (2454) X [x ¥ (x) — (1 —u)YM(x)]]

rzp (39

and one obtains the following expressioﬁ for the scattering length:

2 M2
m:ﬂ( b )u &, + cot(m ) [ch(n 2) (4u(1_ﬁz)+__qb_;_)}

n=2) T@rC(u+1D 24b* P, + cot{mr 1)
(40
valid to the first order in ¢?. @, has been defined by (18) and ¢, is given by
& = —d; & x2 M 22—y (=24 ) 1 (e LA (1) —ap (1 =) (4 b x 2 e ()
L= 2T L )07 — )y S (1)
_ AL xd—an (2 —2p D V) [0 (L)l g (1— #)(4u2+4u+x2J]Yu+1(xs) (41}
2“'!02'*1"#(2:5) (.oy+l_afs)xsju+l(xs)
with x; defined by (19). A condition of applicability of (40) is
2
AT -y b & 1. (42)

24p* Dy - cot(mrp)
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A further simplification is possible for those combinations of # and [ for which u = % In
such a case one gets :

b 1+ (x5 — yis) tan(xg) 21+ 1)? &
%% T antr) = Go— i) [1 ST (3 * ZE)] @)
where
ﬂ _ 1(215? - zxgyls — 3xsyis + 3) tan(x;) — xs(xs?' = 3x5y;5 + 3) ..
P 2 tan(xs) — (Xs — ¥is)
1 @af —2x3 yis — 3xayis + 3) 4 x6(x] — Bxsys + 3) tan(x) 4)
2 T+ (xs — yrs) tan{xs)-

while yi; has been defined by (21).

Finally, for sufficiently large p the potential (25) may be treated as a perturbation of
the short-range interaction and (30) may be replaced by an approximate formula correct to
the first order in 5% and ¢2

ar ~ a — b6 + Fgl D (45)
with 8% defined by (23). A condition of applicability of (45) is
18" — 9P| « las) . (46)

2.4. The Lenz potentials

The last family of potentials we discuss are the Lenz potentials [16]

ﬁz b2,.n—4
win=-—=—————-= b0 R>0 rzp (47)
m (rn—2 + Rn—Z)
considered here with a restriction n > 2{ - 3. A general solution to the radial Schrddinger
eguation

d2ui(ry I¢+1 brre—t
— _—_—— = =
dr2 rz ul(r) + (rn‘—z + Rn—2)2 H[(r) 0 r=2p (48)
has the form {17, 18] -
ur(ry = Ar'2PR(E) + Bir' P PR rep (49)
where PF#(t) are the Legendre functions of the first kind,
20+1 1 462 72
= =] ——— o
k=r=2 Y 2( + (n—2)2R""'2) 7 (50)
and
n-2 _ Rn-—2
t=t{r) = pre= + o (51)

Utilizing properties of the Legendre functions [7] we find the following formula for the
scattering length:

@ = R+ FU=p) [p¥H (vt +e,— ) —ap, (vn, + 1+ P () — (0% —a ) (v—p+1) P (1) (52)

PQ+p) (o2 gty =) —ans (vt bt ) By ()=~ (0¥ =aps o+ P2 )

where

ts = t(p). (33}
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As in cases of the potentials discussed previously, a further simplification of this result is

possible for those combinations of » and [ for which pt = % In such a case one obtains
_ (21_, + I)Rﬂ‘H (R2(21+l) + ayg p2!+1) _ (211 + 1)R23+1 (p2‘+1 _ a!s) tan §2;
(R2UHD 4 g oW+ tan Q + (2v + DRI (p2H] — gi)

(34
where

2(+1
= @+ Vot (S ) 55

It roay happen in applications that R « p. Then the Lenz potential (47) may be
expanded in an asymptotic series and retaining the first two terms one gets
B2 p B 2 '

WS =gt 5

(56)
where
& =2R"2. : (57)

This is the superposition of the inverse power potentials discussed in the previous subsection.
Therefore, for R « p the exact expression for the scattering length (52) may be replaced
by the approximate formula (40). Finally, if the Lenz potential (47) may be treated as a
perturbation of the short-range interaction then (52) may be replaced by (45) which is linear
in 4% and H2R"Z,

3. Applications to atomic physics

3.1. Scattering of charged particles by neutral targets

The long-range parts of the interactions between charged projectiles and neutral targeis have
a form [19, 20]

Cy C )
V()_—r—4~—5+0("7) r— oo , (58)
and may be approximated by any of the potentials discussed in section 2 with an exponent
n = 4. The simplest choice is to apprommate the potential (58) by the inverse fourth-power
potential
#? b2
L) =—5—3 ( )’
with 5% = 2mC, /h?. For this potential the scattering length may be calculated exactly from
the formula

1+ 5(1/p — 1/ags) tan(d/ o)
tan(b/p) — b(1/p — 1/ags)

which because of its striking simplicity is worthy of remembrance [21]. An expression
approximating (60), correct to the first order in b2, is

b2 - 2 _
ag = dgs — — (l—ais+a—°;). 61)
p 3p

This approximate formula has been derived in alternative ways by Temkin and Drukarev
(22].

(60)




7340 R Szmytkowski

More accurate results can be obtained by choosing

R B B2 2
V() = — o+ e
L 2mrt  2mr® (52)
with 2 = 2mCq/h* and ¢* = —2mCs/R*. For this choice an exact expression for the
scattering length is [23]
ao = clf? (=00} (B2 /e DMy 11, 1pa (/02 H o (e /0P b2 f o= D—aps (2c/ p?—8 fe= ) Meiulels®) | 53
0 e AR e P M Tl o A T ) - (63
where the index « is given by
bz .
K=—. - - 64
4c’ (64)
The simpler formula, valid to the first order in ¢, is
14+51/p — 1/ag) tan(d c?
qo = p L3 2070 =~ /aw) (/”)[H 3-:-2@ (65)
tan(b/p) — b(1/p — 1/as) 12p* By
with
L 1 [26%/0° —26° /(0P age)=35* /oa) +3] tan(h/ o) — (b/ o) / 02 = 3b* { (paaos)+-3]
Py T tan{b/ p)=b(1/p~1/a05)
_ L [25%/0* —2b*(pYang) 307 [(pang 1+ 3]+ (b/ 0)(B?/ 62 —B5%  (pter)+3] tan() ) (66)
2 1+5(1/p—=1/ ) tan(b/ p}

while the approximate formula valid to the first order in 5% and ¢? is

b aps  ak c? 3ags  3al
A T (e a1 ALY () R L
do = dn = ( 0’ 3p2)+3p3( 5 5p2) ©D
Finally, we may approximate the potential (58) by the Buckingham polarization potential
[24]
kz bz
L T * - ®

with b2 = 2mCy/R* for which an exact expression for the scattering length has also a very
simple form

= (b + Rz)uz( + pags) — (b* + Rz)m (p — aqs)} tan £2 )
(R? + pags) tan s + (62 + B2 (0 — ags)
with
172
Qs = (1 -k ;2) arctan (%) . (70)

The appropriate approximate expressions correct to the first orders in 52R? or b2 and b2 R?
may be obtained from (65)—(67) replacing ¢ by 26°R%.

3.2, Collisions between neutral particles

If two neutral particles collide, the long-range tail of the interaction potential is often
approximated by [19]
Ce Cg C
Vipx——2— 2 - ;g +00™1%). (71)
r

Many other analytical formuiae are also used [25]. Their common feature is that the leading
terms in their asymptotic expansions fall off as »~5. Therefore to approximate the potential
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(71) we may use any of the potentials discussed in section 2 with an exponent # = 6. The
simplest choice is _
52 bz
Wiy =---= (72)
with b2 = 2mCs/h* for which exact expressions for s and p partial wave scattering lengths,
obtained from (17) and (18), are

o = 2r bl 2 [1 _ pY14(b/20%) — (b 0™ p — a0} Yssalb/ ZPZ)} (73)
TR pJ17a(b/20%) — (b/p?)(p =~ aos) Ts/a(b/2p%)
= b2 [ 30 Y34(b/20%) — (b/pM)(0° - als)Y7/4(b/2p2)] 74)
BITG/DF L | 3p7J32(8/20%) — (b/07)(0® — arg) Jo7a(B/207)
Approximate formulae, correct to the first order in the potential strength 42, are
b? 3aps  3af
~ap——(1=- + == 75
ap dgs 3p3 ( 29 + sz) ( )
b2 d1g a%
a1:als—§(1—§?+_7—£ . (76)
Another possibility is to choose
Ll Ll
Wio)=—-——+5—-% 7
with b2 = 2mCs/h? and ¢* = —2mC o/h%. For this potential exact express:ons for the
scattering lengths are
ao = (c/2) V4 CE (ot s e/ 20 ) p0e/ b o3 —ans(Qe/ o=t e M- s (c/207) (78)

lo—auel(B fe+5YM, 1188/ 207+ 0 20/ p* —b7 [e=3) —ap, (e ] o7~ b7 [c=5Y 1M 1 4 (c/20%)

= 2)3/4 (03 a1, (0% /o 1) Meat.mas(e/20M (63 20/ 05 =02 fo= 1= a1, (2e/ 0* —~B* f =TV I M w312 0/ 20%) (79)
a; = (c/ (B —a1 0 fet DMt 3 (C/ 207 1HLP (22 ] 07 ~B2 =1 11026/ 00 —B2 Je— TV M. 378(c/ 26%)

where

b2
=g (80)

If the second term contributing to VL.(r} may be treated as a perturbation, the following
formulae correct to the first order in the potential strength ¢? hold

2whi2 2¢% 715 o
= Famp ot [1 * %(1—6 T Eo+ 1)} @D

pY1/a(B/20%) — (B/ pz)(p- — dags) Ys/f;(b/ 20%)
pJdua(b/20%) — (B/ %) (p — ans)I5a(b /2%

g0 =~ g (B2 2 23 s (2030 = 3011 14/ 2072+ (B 256/ 7 =By (B p°+5)) Jga B/207)

= 2B/ 207 —B] P7) (o ~a0s) Jspa (B 220)

1 (8P 28  pP —an (28 0t =3) 1Y (b2 (B PSHR 0 o +95a®f26") (g3
13 271726/ 22— (b %) p—a0s) Js s (B 297 ’

with

$g=—

(82)

and

G 21 4
P = G GAR (q"_”[l 3b4(16+¢1—1)} ®
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with
o, = _ 30 Fa®/20%) — b/0M) @’ — 1) Via(b/26%) &)
3p7J31a(b/2p%) — (b/p*)(P° — a1s)J74(b/2p%)
b =—L® (& /)26 o—~ais (2% 64 =) 3y b/ 207)+(8/ P MTB? / o—ay st 1 0 +21 105,400/ 26%)
1= =% 3p7 s/ 207V =B/ 07) 0 — s} Japa (B 287

_1 (B /0925 / p—a1s (282 [ 8° =31 314 (/207 b/ 0DTH [ p=ars (B2 1 o' +2 1)) Va4 B/ 20%) (86)
3p3 13406/ 2pT)— B/ 0205 —a1s) J2ya (B[ 20%) .

—
L)

Finally, the expressions correct to the first order in the potential strengths 5% and ¢? are

b2 3ags = 343 c? Taos | Tat
Mgy — e (1= =+ =2 ) = {1 = & 87
o= au 3p3( 2p +592)+7p’( o T op ) @7
b ais  ad c? Sa; Sa
v =2 (1= By B g 2% | 4 )
a5 (1= 55+ 75 + 1555 w+mJ ¢

The last possibility we discuss is to approximate the long-range part of the interaction
by the Lenz potential

B2 py2
with b? = 2mCs/h? for which exact expressions for the scattering lengths are

dwfAR [PVt ar—1)—ag, (vt Han+ D12 (1) —(o—an) (v 31 P4 (1)

40 = [ra/ar Lo (4vt+at,— D ~ag, (4vrHan+DIPT5 (1)— (p—ao,)(4u+5)t=;;{“(:,) (°0)
) w ATsIR [0° (vt Hdts =3 mas (3t A4t DI P 1)~ (07 —a1s) Gy D Pt (1) on
VT BTG/ 103 (ot At —3) —an (40t 4,430 Pr 2 ()0 — a1 WA T) P (1)
with
172
_o-R By . 92
p4 4 R4 2 4R4 2

The appropriate approximate expressions correct to the first orders in #2R* or b* and b?R*
may be obtained from (81)~(88) replacing ¢ by 26*R*.

It might seem that since some of the expressions presented contain the special functions,
their practical importance is very limited. This is not so since with the aid of available
software, e.g. the Mathematica system [26], numerical evaluation of all the special functions
used in this paper (at least for real values of arguments and indices) is no more difficult or
time consuming than evaluation of the trigonometric functions. Examples of applications
of the derived formulae in numerical work are given in the following subsection.

3.3. Numerical illustrations

We have already utilized (61) and (69) to point out errors in calculations of the electron-
scattering lengths for noble-gas atoms performed by other authors [27]. Here we illustrate
the applicability of our formulae for computmg scattering lengths for the ¢e™—Xe and Cs—Cs
systems.

As a first example we consider electron scattenng by xenon atoms. We approximate
the interaction potential by a simple model potential proposed by Czuchaj et al [28]

(o2 — 6B1)e”

W) (93)

2
V) = Vorxp(—yr®) — 2 Wale) -



Analytical calculations of scattering lengths 7343

where «; and o are the dipole and quadrupole polarizabilities of the target atom and 65
is the dynamical correction to the dipole polarizability. The cut-off functions W,(r) have
been chosen in the form

2 n
W, (r) = [1 — exp (—:—2)] . (94)

with r, being a cut-off radius. The values of constants appearing in (93) and (94) are
(in atomic units): Vo = 306.0, y = 1.0, oy = 27.292, oy = 128.255, f; = 29.2 and

= 1.89, Results of our studies of convergence of the computed scattering length are
presented in table 1. The short-range contribution ap, to the scattering length has been
found numerically for different values of the core radius p. It is seen that ag; converges
to ap extremely slowly while applications of various analytical formulae, especially more
sophisticated ones, accelerate convergence s1gn1ﬁcantly

Table 1. Convergence of the scattering length ap for the e™—Xe collision (the interaction
potential given by (93)). All values are in atomic units.

Scattering length ag

Core radius  Short-range  Exwapolated  Extrapolated  Extrapolated  Extrapolated  Extrapolated

s ags(p) 61y - 60) (€7 63) (63

5.0 x 10° 105714  -=3.25115 ~5.188%0 —3.16355 —~4.94998 —4.95477
75%x10° 037802 —4.20344 —5.01864 -4,16349 —4.95253 —4.95281
LOx 10! —1.45790 —4.604 33 —4.97852 —4,58506 —4.95277 —4.95281 |
20x 100 —3.30875 ~491155 —~4.95546 —4.909 08, ~4,95281 —4.95281
50x 100 —4.35581 4,850 58 —4.95295 —4.95044 ~4.95281 —4,95281
LOx 10?2  —4.66670 —4.952 55 -4.95282 -4.95253 —4.95281 —4.95281
1.0x10°  —492538 —495280  —4.95281 = -4.95280 —4.95281 —4.95281
1.0x10* —4.95007 —4.952 81 —4.95281 —4.95281 —4.9528] —4.95281

o - —4.95281 —4,952 81 —4.95281 —4.952381 —4.95281 —4.95281

As a second example we consider Cs—Cs scattering in the 3T, state. This system has
been studied recently by Gribakin and Flambaum [2] and Marinescu [3] who approximated
the interaction potential by

V() = 2 Br* exp(—fr) - (66 - D)o ©9)

The cut~off function fi(r} has been chosen in a forrn

2 -
=0 ~r)+ 0 —I‘) eXP(—(l - :‘_c) ) - (96)

where ®(x) is the Heaviside function and r, is a cut-off radius. The values of constants
appearing in (95) and (96) are (in atomic units): B = 1.6 x 1073, ¢ = 5.53, 8 = 1.072,
Co =7.02 x 10°, Cs = 1.1 x 10°, Cyp = 1.7 x 10® and r, = 23.165. The value of the
cesium mass used in the present calculations is (in atomic unils) mes = 2.422 x 10°. Note
that for the system considered m = mcs/2. Results of our calculations are presented in
table 2 from which it is evident that also in thls case apphcatlon of analyncal fonnulae
improves convergence [29, 30].

We emphasize that applicability of our analyncal results is not restricted to such simple
choices of the short-range parts of the interaction potentials as used above. The interaction
between colliding particles inside the core might be described to any degree of sophistication.
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Table 2. Convergence of the scattering length ap for the Cs—Cs collision in the 3, state (the
interaction patential given by (95)). All values are in atomic units [29, 30].

* Scattering length ag

Core radius ~ Short-range  Extrapolated  Extrapolated  Extrapolated  Extrapolated
e aos(p) (75 3 87 (81}

1.0x 102 11893602  82.26385 68.55017 8226274 68.54774
2.0 x 10 10038585 7217128 68.29523 7217115 68.29505
5.0 % 10? 71.85070  68.23785 68.21957 68.23785 6821957
1.0 x 10° 68.72838 ~ 68.21845 68.21828 68.21845 6821828
1.0 x 10* 6821879  68.21823 68.21823 68.21823 68.21823
0o 6821823  68.21823 68.21823 68.21823 68.21823

The only requirement for our formulae to be applicable is that the short-range scattering
lengths at the core boundary should be known.
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