
Analytical calculations of scattering lengths in atomic physics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 7333

(http://iopscience.iop.org/0305-4470/28/24/027)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 28 (1995) 7333-7345. Printed in the lk 

Analytical calculations of scattering lengths in atomic 
physics 

Radosfaw Szmytkowski 
institute of Theoretical Physics and Astrophysics, University of Gdahk, Wtta Stwosza 57, 
80-952 Gdaisk, Poland 

Received 5 lune 1995, in final form 11 September 1995 

Abstract. We describe a method for evaluating analytical long-range contributions to scanering 
lengths for some potentials used in atomic physics, We assume that an interaction potential 
between colliding particles consists of two parts. The form of a short-range component. vanishing 
beyond some distance from the origin (a core radius), need not be given. Instead. we assume 
that a set of short-range scattering lengths due to that p a s  of the interaction is known. A long- 
range tail of the potential is chosen to be an inverse power potential, a superposition of two 
inverse power potentials with suitably chosen exponents or the Lenz potential. For these three 
classes of long-range interactions a radial Schrijdinger equation at zero energy may be solved 
analytically with solutioos expressed in t e m  of the Bessel, Whittaker and Legendre functions, 
respectively. We utilize this fact and derive exact analytical formule for the scattering lengths. 
The expressions depend an the short-range scattering len,ds. the core radius and parameters 
characterizing the long-range part of the interaction. Cases when the long-range potential (or 
its part) may be treated as a perturbation are also discussed and formulae for scattering lengths 
lineat in strengths of the perturbing potentials are given. It is shown that for some combination 
of the orbital angular momenNm quantum number and an exponent of the leading term of the 
potential the derived formulae. exact or approximate, take very simple forms and contain only 
polynamlal and trigonometric functions. The expressions obtained in this paper are applicable to 
scattering of charged particles by neuual twgets and to collisions between neutrals. The results 
are illustrated by accelerating convergence of scattering lengths computed for e--Xe and C& 
systems. 

1. Introduction 

In many approaches used to solve collision problems in atomic physics the three-dimensional 
configuration space is divided into two regions separated by a spherical shell (a core 
boundary) of radius p 111. In the inner region (i- < p )  the short-range interaction 
between two colliding particles is very complicated and a scattering equation must be solved 
independently for each combination of particles. In contrast, if p is chosen sufficiently large 
the scattering problem in the outer region (r z p )  may be reduced to potential scattering 
with the long-range potential accurately approximated by a simple analytical expression. 
A numerical solution in this region is usually easily approachable. However. if exact or 
approximate analytical solutions to the Schrodinger equation are available in this region, a 
general discussion of the dependency of scattering observables on parameters characterizing 
the long-range part of the interaction is possible. Clearly, such cases always remain of 
considerable interest. 

In this paper we consider a problem of computing long-range contributions to scattering 
lengths in atomic physics. This problem has recently actracted some interest [2, 31. 
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We utilize the fact that analytical solutions to the radial Schkidinger equation at zero 
energy do  exist for the most important long-range potentials used in atomic physics. This 
immediately implies that corresponding long-range contributions to the scattering lengths 
may be found exactly. In section 2 we derive analytic expressions for scattering lengths for 
potentials vanishing asymptotically as the inverse power potentials, superpositions of two 
such potentials with suitably chosen exponents and the Lenz potentials. In section 3 we 
discuss applications of these results to atomic physics and give illustrative examples. 

2. Theory 

2.1. Preliminaries 

A variety of definitions of the scattering lengths exist. Throughout this paper we use the 
one which defines an lth partial wave scattering length a! as 

a! = -~(z - I)!! (21 + I ) ! !  Iim[ku+'cot~l(k)]-' (1) 

where &(k) is an Ith partial wave phase shift due to the scattering potential and k is a 
wavenumber of a scattered particle. Some authors use a definition with an opposite sign 
while some omit the factor (Zl - I)!!(Zl + I)!! For 1 = 0 our definition agrees with that 
adopted by Fano and Rau [l]. It may be shown [4] that a! exists only for potentials with 
long-range tails VL(r) satisfying a condition 

k-0 

lim r'+3~L(r) = 0 .  (2) 
r a m  

Numerical computation of the scattering lengths is usually based on numerical integration 
of the zero-energy Schradinger equation (e.g. [5 ] )  or a first-order nonlinear differential 
equation arising in the variable phase' method [6]. Alternative approaches have recently 
been presented by Gribakin and Flambaum [Z] and Marinescu 131. Here we shall use still 
another method. 

The scattering length may be extracted from a solution to a radial Schrodingcr equation 
at an energy E = 0 

which for potentials satisfying condition ( 2 )  behaves asymptotically as 

ui(r) r%m constant x (rr+' - alr-'). (4) 

It follows from (3) and (4) that a! is an asymptotic limit of a function al(r), 

defined as 

Here 

is a logarithmic derivative of the zero-energy wavefunction ur(r). 
In the following we shall assume that the interaction potential between a projectile and 

a target consists of two parts. The form of a short-range component, vanishing beyond the 
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core radius p,  need not be given. Instead, we suppose that a set of short-range scattering 
lengths aIs due to that part of the interaction is known. For r > p the general solution to (3) 
has the form 

s0) = Alf i ( r )  + B g d r )  r 2 P (9) 
where fi and g, are two linearly independent solutions to this equation. Then the logarithmic 
derivative Ll is 

where prime denotes differentiation with respect to the argument and D1 = B!/A ,  is to be 
determined. This can easily be done and from (6) and (9) used at r = p one obtains 

(10) 

since a,$ = a,(p). The mettiod which we shall utilize in this paper employs ( 5 ) , ~ ( 6 ) ,  (9) 
and (10). 

2.2. Inverse power potentials 

Let V&-) be the inverse power potential of the form 

(pzl+t - .a! , )pf / (p)  - [ ( I  + l ) p ~ + ~  + ~ f i i p )  
(p"+l - adpg;(p) - [ ( I  + W+' + l a d g d p )  

Di = - 

hz b2 
2m r n  

VL(T)=--- b > O  r > p  

A general solution to the Schrodinger equation 

may be written in terms of~the Bessel and Neumann functions [7-91 

u,(r) = A,r1/'J,(x) + B,r"*Y,(x) ' r  2 p (13) 
where 

21 + 1 p = -  
n - 2  

and 

Condition (2) requires 

n > 21 + 3 or equivalently 0 < p < 1 (16) 
otherwise nl does not exist. Utilizing equations (5)-(10) and standard properties of the 
Bessel and Neumann functions [7] one finds 

with 

where 
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Similar results have been obtained by Fabrikant [ l o ]  and Gribakin and Flambaum [2]. 
Equations (17) and (18) greatly simplify for those combinations of n and I for which 

p = 1. Then the Bessel and Neumann functions may be expressed in terms of trigonometric 
functions [7] and one gets 

where 

In many practical applications the long-range potential may be treated as a perturbation of 
the short-range interaction, which always holds for sufficiently large p.  In such a case one 
gets the following expression correct to the first order in bZ: 

(22) 2 (4 ai 2 aIs - b e, 
where 

is independent on b. A condition of applicability of (22) is 
2 (4 b lei I << larsI . 

2.3. Superposition of two inverse power potentials 

Next we consider scattering of an Ith partial wave by the long-range potential [Ill 

b > O  r > p  
h2 bZ h2 c2 

VL(r )  = + -- 2mr" 2mr"-2 
with a restriction n > 21 + 3. In applications c2 may be positive as well as negative. A 
general solution to the radial SchrBdinger equation 

may be expressed in terms of the Whittaker functions [12-141 

ui(r)  = A;r"-"'zMK,,,2(z) + B ~ " ' ' Z M x , - , ~ ~ ( ~ )  (27) 
where 

b2 
K =  

21+ 1 p=- 
n - 2  2(n - 2)c 

and 

Note that for c2 < 0 the index K and the variable z are purely imaginary. Utilizing properties 
of the Whittaker functions [7] the scattering length is found to be 



Analytical calculations of scattering lengths 1337 

We observe that in applications the second term contributing to VL(r) (proportional to 
c2) might be much smaller then the first one and thus might be treated as a perturbation of 
the latter. This allows us to apply the perturbation theory to derive an analytical expression 
which is linear in cz. The substitution 

ul(r) = p - U l ( z n - 4 )  U i O )  (32) 

with 

c E [ ( r )  = r - (n-2)  h = +- 1) (33) 

converts the Schrodinger equation (26) into the well known Coulomb equation 

where 

(35) 

It has been~shown in [15] that its regular and irregular solutions may be expanded in series 
of the Bessel and Neumann functions, respectively, and that to the first order in C2 one has 

- b  - c  b=- .~ c = -  
n - 2  n - 2 '  

valid to the first order in cz. 41 has been defined by (18) and Qi is given by 

with xs defined by (19). A condition of applicability of (40) is 

@l I << 1. 4p(1 - + @I + cot(7rl*) 
1.21- 1 (42) 
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A further simplification is possible for those combinations of n and 1 for which p = 4. In 
such a case one gets 

where 

while ylr has been defined by (21). 
Finally, for sufficiently large p the potential (25) may be treated as a perturbation of 

the short-range interaction and (30) may be replaced by an approximate formula correct to 
the first order in b2 and c2 

(45) al Y al, - b2@’ + C2e:2n-2) 

with 0:“’ defined by (23). A conditionof applicability of (45) is 

1b2ey) - c2ej2n-2)1 << lalsl. (46) 

2.4. The Lenz potentials 

The last family of potentials we discuss are the Lenz potentials 1161 
7,2 bZrn-4 

b > O  R > O  r > p  (47) 
)2 

V,(r) = -- 
2m ( p - z  + ~ a - 2  

considered here with a restriction n > Z + 3. A general solution to the radial Schrodinger 
equation 

~~ 

has the fonn [17, 181 

u1(r) = AIr1’2P;P(t) + Ep-”2Pr(t) r 2 p 

where P$@(t)  are the Legendre functions of the first kind, 

21 + 1 p=- 
n - 2  

and 

Utilizing properties of the Legendre functions [7] we find the following formula for the 
scattering length 

where 

t ,=t@). 
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As in cases of the potsntials discussed previously, a further simplification of this result is 
possible for those combinations of n and 1 for which p = $. In such a case one obtains 

where 

Q, = (2u + 1 )  arctan (;:::). - (55) 

It may happen in applications that R << p. Then the ,Len2 potential (47) may be 
expanded in an asymptotic series and retaining the first two terms one gets 

h2 b2 hZ c2 
VL(r) Y +-- k r "  2m r2n-2 

where 

c2 = 2b2R"-=. ' (57) 

This is the superposition of the inverse power potentials discussed in the previous subsection. 
Therefore, for R << p the exact expression for the scattering length (52) may be replaced 
by the approximate formula (40). Finally, if the Lenz potential (47) may be treated as a 
perturbation of the short-range interaction then (52) may be replaced by (45) which is linear 
in b2 and b2Rn-'. 

3. Applications to atomic physics 

3.1. Scattering of charged particles by neutral targets 

The long-range parts of the interactions between charged projectiles and neutral targets have 
a form 119, 201 

V ( r )  -- c4 - - '6 + 0 c r - 7 )  r + oo 
r4 r6 

and may be approximated by any of the potentials discussed in section 2 with an exponent 
n = 4. The simplest choice is to approximate the potential (58) by the inverse fourth-power 
potential 

R 2  b2 
V,(r) = --- 

2m r4 (59) 

with b2 = 2mC4/h2. For this potential the scattering ]en@ may be calculated exactly from 
the fomiula 

which because of its striking simplicity is worthy of remembrance [21] .  An expression 
approximating (60). correct to the first order in b2, is 

P 
This approximate formula has been derived in alternative ways by Temkin and Drukarev 
WI. 
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More accurate results can be obtained by choosing 

R2 b2 fi2 c2 K ( r )  = - -- + -- 
2m r4 2mr6 

with b2 = ZmC4/fi2 and c2 = -?”6/k2. For this choice an exact expression for the 
scattering length is 1231 

where the index K is given by 

b2 
4c 

K = - - .  

The simpler formula, valid to the first order in c2, is 

Finally, we may approximate the potential (58) by the Buckingham polarization potential 
~ 4 1  

h2 b2 
2m (rZ + R2)* VL(r) = - - 

with b2 = 2mC4/hz for which an exact expression for the scattering length has also a very 
simple form 

with 

The appropriate approximate expressions correct to the first orders in b2RZ or b2 and b2R2 
may be obtained from (65)-(67) replacing 2 by 2bzR2. 

3.2. Collisions beiween neutral particles 

If two neutral particles collide, the long-range tail of the interaction potential is often 
approximated by [19] 

Many other analytical formulae are also used [ S I .  Their common feature is that the leading 
terms in their asymptotic expansions fall off as F6. Therefore to approximate the potential 
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(71) we may use any of the potentials discussed in section 2 with an exponent n = 6. The 
simplest choice is 

with b2 = 2mC& for which exact expressions for s and p partial wave scattering lengths, 
obtained from (17) and (18), are 

Approximate formulae, correct to the first order in the potential strength b2, are 

Another possibility is to choose 

h2 b2 h2 c2 
V,(r) = - -- + -- 

2mr6 2mrlQ 
with bZ = 2mC6/R2 and c2 = -2mClo/A2. For this potential exact expressions for the 
scattering lengths are 

where 
b2 
8c 

K = - - .  

If the second term contributing to VL(r)  may be treated as a perturbation, the following 
formulae correct to the first order in the potential strength cz hold 

and 

rrb312 (@* - 1 )  [I +g (" 16 + A)] @ I  - 1  = 6[r(3/4)I2 



Finally, the expressions correct to the first order in the potential strengths b2 and c2 are 

The last possibility we discuss is to approximate the long-range part of the interaction 
by the Lenz potential 

(89) , ,  , .  . ~ , . . . , ,  ~ , . , .  
A’ 6%’ 
2m (r4 + R4)2 

V,(r) = - - 

with b2 = 2mC,j/h2 for which exact expressions for the scattering lengths are 

with 

p4  - R4 r, = - 
p4 4- R4 

The appropriate approximate expressions correct to the first orders in b2R4 or b2 and b2R4 
may be obtained from (Sl)+X?) replacing c2 by 2b2R4. 

It might seem that since some of the expressions presented contain the special functions, 
their practical importance is very limited. This is not so since with the aid of available 
software, e.g. the Muthematica system [26],  numerical evaluation of all the special functions 
used in this paper (at least for real values of arguments and indices) is no more difficult or 
time consuming than evaluation of the trigonometric functions. Examples of applications 
of the derived formulae in numerical work are given in the following subsection. 

3.3. Numerical illustratiom 

We have already utilized (61) and (69) to point out errors in calculations of the electron- 
scattering lengths for noble-gas atoms performed by other authors [27].  Here we illustrate 
the applicability of our formuIae for computing scattering lengths for the e--Xe and Cs-cS 
systems. 

As a first example we consider electron scattering by xenon atoms. We approximate 
the interaction potential by a simple model potential proposed by Czuchaj et al 1281 
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where al and a2 are the dipole and quadrupole polarizabilities of the target atom and 681 
is the dynamical correction to the dipole polarizability. The cut-off functions W,(r) have 
been chosen in the form 

with r, being a cut-off radius. The values of constants appearing in (93) and (94) are 
(in atomic units): -VO = 306.0, y = 1.0, a1 = 27.292, 012 = 128.255, PI = 29.2 and 
r, = 1.89. Results of our studies of convergence of the computed scattering length are 
presented in table 1. The short-range contribution aor to the scattering length has been 
found numerically for different values of the core radius p. It is seen that a h  converges 
to a. extremely, slowly while applications of ,various analytical formulae, especially more 
sopfiisticated ones, accelerate convergence significantly. 

Table 1. Convergence of the scattering lengrh ao for the e--Xe collision (the interaction 
Dotentid dven by (93)). All values are in atomic units. 

~ ~ ~ 

Scattering length a0 

.. 
Core radius Short-range Extrapolated Exuapolated Extrapdated Extrapolated Exuapalated 
P nor@) (61) (60) (67) (65) (63) 

5.0 x loo 1.097.14 ,-3.25115 -5.18890 -3.16355 -4.94998 -4.95477 
7.5 x 10' -0.37802 -4.20344 -5.01864 -4,16349 -4.95253 -4.95281 
1.0 x 10' -1.45790 -4.60433 -4.97852 -4.58506 -4.95277 ~-4.95281 
2.0 x 10' -3.30875 -4.91155 -4.95546 -4.90908. -4.95281 -4.95281 
5.0 x 10' -4.35581 -4.95058 -4.95295 -4.95044 -4.95281 -4.95281 
1.0 x 10' -4.66670 :4.95255 -4.95282 -4.95253 -4.95281 -4.95281 
1 . 0 ~  lo3 -4.92538 -4.95280 ~ -4.95281 , -4.95280 -4.95281 -4.95281 
1.0 x IO4 -4.95007 -4.95281 -4.95281 -4.95281 -4.95281 -4.95281 
00 -4.95281 -4.95281 -4.95281 -4.95281 -4.95281 -4.95281 

As a second example we consider Cs-Cs scattering in the 'Eu state. This system has 
been studied recently by Gribakin and Rambaum [2] and Marinescu [3] who approximated 
the interaction potential by 

1 
2 

V ( r )  = -Er'exp(-pr) - 

The cut-off function f&) has been chosen in a form 

(95) 

where O(x)  is the Heaviside function and r, is a cut-off radius. The values of constants 
appearing in (95) and (96) are (in atomic units? ~ B = 1.6 x a = 5.53, 8 = 1.072, 
C, = 7.02 x lo3, C8 = 1.1 x lo6, Cl0 = 1.7 x IO8 and r, = 23.1651 The value of the 
cesium mass used in the present calculations is (in atomic unifs) mcs = 2.422 x I$. Note 
that for the system considered m = mci/2. Results of our calculations are presented in 
table 2 from which it is evident that also in this case application of analytical formulae 
improves convergence [29, 301. 

We emphasize that applicability of our analytical results is not restricted to such simple 
choices of the short-range parts of the interaction potentials as used above. The interaction 
between colliding paaicles inside the core might be described to any degree of sophistication. 
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Table 2. Convergence of the scattering length ao for the Cs-Cs collision in the 3 &  state (the 
interaction potential given by (95)). All values are in atomic units [29, 301. 

Scattering length no 

Core radius Short-range Extrapolated Extrapolated Extrapolated Extrapolated 

1.0 x lo2 118.93602 ' 82.26385 68.55017 82.26274 68.54774 
2.0 x IO2 100.38585 72.17129 68.29525 72.17115 68.29505 
5.0 x IO2 71.85070 68.23785 68.21957 68.23785 68.21957 
1.0 x IO3 68.72838 ~~ 68.21845 68.21828 68.21845 68.21828 
1.0~ IO4 68.21879 68.21823 68.21823 68.21823 68.21823 
W 68.21823 6821823 68.21823 68.21823 68.21823 

P 4@W (751 (73) (87) (81) 

The only requirement for our formulae to be applicable is that the short-range scattering 
lengths at the core boundary should be known. 
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